Routine clinical visits of a patient produce not only image data, but also non-image data containing clinical information regarding the patient, i.e., medical data is multi-modal in nature. Such heterogeneous modalities offer different and complementary perspectives on the same patient, resulting in more accurate clinical decisions when they are properly combined. However, despite its significance, how to effectively fuse the multi-modal medical data into a unified framework has received relatively little attention. In this paper, we propose an effective graph-based framework called HetMed (Heterogeneous Graph Learning for Multi-modal Medical Data Analysis) for fusing the multi-modal medical data. Specifically, we construct a multiplex network that incorporates multiple types of non-image features of patients to capture the complex relationship between patients in a systematic way, which leads to more accurate clinical decisions. Extensive experiments on various real-world datasets demonstrate the superiority and practicality of HetMed. The source code for HetMed is available at https://github.com/Sein-Kim/Multimodal-Medical.
translated by 谷歌翻译
在过去的几年中,图表学习(GRL)是分析图形结构数据的有力策略。最近,GRL方法通过采用用于图像的学习表示形式而开发的自我监督学习方法来显示出令人鼓舞的结果。尽管它们成功了,但现有的GRL方法倾向于忽略图像和图形之间的固有区别,即,假定图像是独立和相同分布的,而图表在数据实例之间显示了关系信息,即节点。为了完全受益于图形结构数据中固有的关系信息,我们提出了一种名为RGRL的新颖GRL方法,该方法从图形本身生成的关系信息中学习。 RGRL学习节点表示形式,使节点之间的关系是增强的不变性,即增强不变的关系,只要保留节点之间的关系,就可以改变节点表示。通过在全球和本地观点中考虑节点之间的关系,RGRL克服了对对比和非对抗性方法的局限性,并实现了两者中最好的。在各种下游任务上对十四个基准数据集进行了广泛的实验,证明了RGRL优于最先进的基线。 RGRL的源代码可在https://github.com/namkyeong/rgrl上获得。
translated by 谷歌翻译
婴儿生命的最初几年被称为关键时期,在此期间,由于神经可塑性,学习绩效的总体发展受到显着影响。在最近的研究中,具有深层神经网络模仿实际神经元的深层神经网络的AI药物表现出与人类关键时期类似的学习期。特别是在此初期,适当的刺激在发展学习能力中起着至关重要的作用。但是,将人类的认知偏见转变为适当的塑造奖励是非常具有挑战性的,并且在关键时期的先前工作并不集中于寻找适当的刺激。为了进一步迈出一步,我们建议多阶段的增强学习强调在关键时期发现``适当的刺激''。受到人类早期认知发展阶段的启发,我们在关键时期附近使用多阶段的指导,并证明就AI代理的性能,效率和稳定性而言,适当的成型奖励(2阶段指导)。
translated by 谷歌翻译
关键时期是阶段,其中幼儿的大脑在喷射中发展。为促进儿童认知发展,在本阶段至关重要。然而,目前尚不清楚是否存在对AI代理商的培训也存在这种关键时期。与人类幼儿相似,顺序引导和多模式相互作用可能显着提高AI代理的培训效率。为了验证这一假设,我们将此概念调整到AI代理商中学习的关键时期,并调查AI代理人的虚拟环境中的关键时期。我们在加固学习(RL)框架中正规化关键时期和幼儿指导学习。然后,我们建立了一个像veca工具包的幼儿环境,以模仿人类托儿的学习特征。我们研究三个离散的相互互动水平:弱导兵指导(稀疏奖励),中等导师指导(助手奖励)和导师演示(行为克隆)。我们还介绍了由30,000个现实世界图像组成的EAVE数据集,以完全反映幼儿的观点。我们从两个角度评估关键时期对AI代理商的影响:如何以及何时在统一和多式化学习中最佳。我们的实验结果表明,Uni-和多式联运剂,具有中等导师的指导和100万和200万次训练步骤的关键期显示出明显的改进。我们通过在EAVE数据集上传输学习来验证这些结果,并在同一关键时期和指导下找到性能进步。
translated by 谷歌翻译
灵感来自最近应用于图像上的自我监督方法的成功,图形结构数据的自我监督学习已经看到迅速增长,特别是基于增强的对比方法。但是,我们认为没有精心设计的增强技术,图形上的增强可能是任意行为的,因为图形的底层语义可以急剧地改变。因此,现有增强的方法的性能高度依赖于增强方案的选择,即与增强相关联的超级参数。在本文中,我们提出了一种名为AFGRL的图表的一种新的增强自我监督学习框架。具体地,我们通过发现与图形共享本地结构信息和全局语义的节点来生成图表的替代视图。各种数据集的各种节点级任务,即节点分类,群集和相似性搜索的广泛实验证明了AFGRL的优越性。 AFGRL的源代码可在https://github.com/namkyeong/afgrl中获得。
translated by 谷歌翻译
The automated segmentation and tracking of macrophages during their migration are challenging tasks due to their dynamically changing shapes and motions. This paper proposes a new algorithm to achieve automatic cell tracking in time-lapse microscopy macrophage data. First, we design a segmentation method employing space-time filtering, local Otsu's thresholding, and the SUBSURF (subjective surface segmentation) method. Next, the partial trajectories for cells overlapping in the temporal direction are extracted in the segmented images. Finally, the extracted trajectories are linked by considering their direction of movement. The segmented images and the obtained trajectories from the proposed method are compared with those of the semi-automatic segmentation and manual tracking. The proposed tracking achieved 97.4% of accuracy for macrophage data under challenging situations, feeble fluorescent intensity, irregular shapes, and motion of macrophages. We expect that the automatically extracted trajectories of macrophages can provide pieces of evidence of how macrophages migrate depending on their polarization modes in the situation, such as during wound healing.
translated by 谷歌翻译
Data-centric AI has shed light on the significance of data within the machine learning (ML) pipeline. Acknowledging its importance, various research and policies are suggested by academia, industry, and government departments. Although the capability of utilizing existing data is essential, the capability to build a dataset has become more important than ever. In consideration of this trend, we propose a "Data Management Operation and Recipes" that will guide the industry regardless of the task or domain. In other words, this paper presents the concept of DMOps derived from real-world experience. By offering a baseline for building data, we want to help the industry streamline its data operation optimally.
translated by 谷歌翻译
According to the rapid development of drone technologies, drones are widely used in many applications including military domains. In this paper, a novel situation-aware DRL- based autonomous nonlinear drone mobility control algorithm in cyber-physical loitering munition applications. On the battlefield, the design of DRL-based autonomous control algorithm is not straightforward because real-world data gathering is generally not available. Therefore, the approach in this paper is that cyber-physical virtual environment is constructed with Unity environment. Based on the virtual cyber-physical battlefield scenarios, a DRL-based automated nonlinear drone mobility control algorithm can be designed, evaluated, and visualized. Moreover, many obstacles exist which is harmful for linear trajectory control in real-world battlefield scenarios. Thus, our proposed autonomous nonlinear drone mobility control algorithm utilizes situation-aware components those are implemented with a Raycast function in Unity virtual scenarios. Based on the gathered situation-aware information, the drone can autonomously and nonlinearly adjust its trajectory during flight. Therefore, this approach is obviously beneficial for avoiding obstacles in obstacle-deployed battlefields. Our visualization-based performance evaluation shows that the proposed algorithm is superior from the other linear mobility control algorithms.
translated by 谷歌翻译
This paper proposes a new regularization algorithm referred to as macro-block dropout. The overfitting issue has been a difficult problem in training large neural network models. The dropout technique has proven to be simple yet very effective for regularization by preventing complex co-adaptations during training. In our work, we define a macro-block that contains a large number of units from the input to a Recurrent Neural Network (RNN). Rather than applying dropout to each unit, we apply random dropout to each macro-block. This algorithm has the effect of applying different drop out rates for each layer even if we keep a constant average dropout rate, which has better regularization effects. In our experiments using Recurrent Neural Network-Transducer (RNN-T), this algorithm shows relatively 4.30 % and 6.13 % Word Error Rates (WERs) improvement over the conventional dropout on LibriSpeech test-clean and test-other. With an Attention-based Encoder-Decoder (AED) model, this algorithm shows relatively 4.36 % and 5.85 % WERs improvement over the conventional dropout on the same test sets.
translated by 谷歌翻译
Affect understanding capability is essential for social robots to autonomously interact with a group of users in an intuitive and reciprocal way. However, the challenge of multi-person affect understanding comes from not only the accurate perception of each user's affective state (e.g., engagement) but also the recognition of the affect interplay between the members (e.g., joint engagement) that presents as complex, but subtle, nonverbal exchanges between them. Here we present a novel hybrid framework for identifying a parent-child dyad's joint engagement by combining a deep learning framework with various video augmentation techniques. Using a dataset of parent-child dyads reading storybooks together with a social robot at home, we first train RGB frame- and skeleton-based joint engagement recognition models with four video augmentation techniques (General Aug, DeepFake, CutOut, and Mixed) applied datasets to improve joint engagement classification performance. Second, we demonstrate experimental results on the use of trained models in the robot-parent-child interaction context. Third, we introduce a behavior-based metric for evaluating the learned representation of the models to investigate the model interpretability when recognizing joint engagement. This work serves as the first step toward fully unlocking the potential of end-to-end video understanding models pre-trained on large public datasets and augmented with data augmentation and visualization techniques for affect recognition in the multi-person human-robot interaction in the wild.
translated by 谷歌翻译